Design of Low Phase Noise Low Power CMOS Phase Locked Loops

نویسنده

  • Xintian Shi
چکیده

Phase locked loop (PLL) is one of the most critical devices in modern electronic systems. PLLs are widely used as clock generator or frequency synthesis in communication systems, computers, radio and other electronic applications. Phase noise represents the phase variations of a PLL output signal and is the most important characteristic of PLLs because it reflects the stability of PLL systems. Low power consumption is always desired for any electronic products today. CMOS technology is the most common process to make integrated-circuits. In this thesis, we focus on the design of low phase noise and low power CMOS PLL integrated circuits. Understanding phase noise generation mechanism in PLLs is the basis for low phase noise design. Therefore, phase noise contributed by each components in PLLs are studied at first. Voltage controlled oscillator (VCO) is a critical component and the main noise contributor in a PLL. A detailed phase noise analysis for LC-tank based VCO and ring oscillator VCO, which are the most implemented VCO types, is performed. Then, the techniques for designing low phase noise and low power VCO and PLL are studied. Two PLL prototype chips are designed and fabricated in CMOS technology to demonstrate the design techniques for low phase noise and low power PLL. The first PLL is applied as clock generator in a LVDS transmitter and implemented into the AMS 0.35 μm CMOS process technology. A novel low noise charge-pump is implemented in this PLL to achieve low phase jitter together with a VCO based on fully differential ring oscillator, a PFD based on dynamic logic circuit, and a passive loop filter. The measurement results of the PLL chip exhibit excellent phase jitter-power consumption product and wide lock range. The second PLL chip is used in an atomic clock system to provide a reference frequency of 1.5 GHz. The test chip is implemented into

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of High-Speed, Low-Power Frequency Dividers and Phase-Locked Loops in Deep Submicron CMOS

Deep submicron CMOS technologies offer the high speed and low power dissipation required in multigigahertz communication systems such as optical data links and wireless products. This paper introduces the design of two communication circuits, namely a 1/2 frequency divider and a phase-locked loop, fabricated in a partially scaled 0.1 m CMOS technology. Configured as a master-slave circuit, the ...

متن کامل

Novel Phase-frequency Detector based on Quantum-dot Cellular Automata Nanotechnology

The electronic industry has grown vastly in recent years, and researchers are trying to minimize circuits delay, occupied area and power consumption as much as possible. In this regard, many technologies have been introduced. Quantum Cellular Automata (QCA) is one of the schemes to design nano-scale digital electronic circuits. This technology has high speed and low power consumption, and occup...

متن کامل

High Speed Delay-Locked Loop for Multiple Clock Phase Generation

In this paper, a high speed delay-locked loop (DLL) architecture ispresented which can be employed in high frequency applications. In order to design the new architecture, a new mixed structure is presented for phase detector (PD) and charge pump (CP) which canbe triggered by double edges of the input signals. In addition, the blind zone is removed due to the elimination of reset signal. Theref...

متن کامل

Dual Phase Detector Based Delay Locked Loop for High Speed Applications

In this paper a new architecture for delay locked loops will be presented.  One of problems in phase-frequency detectors (PFD) is static phase offset or reset path delay. The proposed structure decreases the jitter resulted from PFD by switching two PFDs. In this new architecture, a conventional PFD is used before locking of DLL to decrease the amount of phase difference between input and outpu...

متن کامل

Jitter-Induced Power/ground Noise in CMOS PLLs: A Design Perspective

CMOS Phase-locked loops (PLL) are ubiquitous in RF and mixed-signal integrated circuits. PLLs are very sensitive to noise fluctuations on the power and ground rails. In this paper, a general comprehensive stochastic model of the power/ground (P/G) noise in VLSI circuits is presented. This is followed by calculation of the phase noise of the voltage-controlled oscillator (VCO) in terms of the st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009